Lecture 4 Probabilistic temporal logics

Dr. Dave Parker

Department of Computer Science University of Oxford

Overview

- Temporal logic
- Non-probabilistic temporal logic
 CTL
- Probabilistic temporal logic
 PCTL = CTL + probabilities
- Qualitative vs. quantitative
- Linear-time properties

 LTL, PCTL*

Temporal logic

- Temporal logic
 - formal language for specifying and reasoning about how the behaviour of a system changes over time
 - extends propositional logic with modal/temporal operators
 - one important use: representation of system properties to be checked by a model checker
- Logics used in this course are probabilistic extensions of temporal logics devised for non-probabilistic systems
 - So we revert briefly to (labelled) state-transition diagrams

DP/Probabilistic Model Checking, Michaelmas 2011

State-transition systems

- Labelled state-transition system (LTS) (or Kripke structure)
 - is a tuple $(S, s_{init}, \rightarrow, L)$ where:
 - S is a set of states ("state space")
 - $\boldsymbol{s}_{init} \in \boldsymbol{S}$ is the initial state
 - $\rightarrow \subseteq$ S x S is the transition relation
 - L : S \rightarrow 2^{AP} is function labelling states with atomic propositions (taken from a set AP)

• DTMC (S,s_{init},P,L) has underlying LTS (S,s_{init}, \rightarrow ,L) - where $\rightarrow = \{ (s,s') \text{ s.t. } P(s,s') > 0 \}$

Paths – some notation

- Path $\omega = s_0 s_1 s_2 \dots$ such that $(s_i, s_{i+1}) \in \rightarrow$ for $i \ge 0$
 - we write $s_i \rightarrow s_{i+1}$ as shorthand for $(s_i,s_{i+1}) \in \rightarrow$
- $\omega(i)$ is the (i+1)th state of ω , i.e. s_i
- ω [...i] denotes the (finite) prefix ending in the (i+1)th state - i.e. ω [...i] = $s_0 s_{1...} s_i$
- $\omega[i...]$ denotes the suffix starting from the (i+1)th state - i.e. $\omega[i...] = s_i s_{i+1} s_{i+2}...$
- As for DTMCs, Path(s) = set of all infinite paths from s

CTL

- CTL Computation Tree Logic
- Syntax split into state and path formulae
 - specify properties of states/paths, respectively
 - a CTL formula is a state formula
- State formulae:
 - $\varphi ::= true | a | \varphi \land \varphi | \neg \varphi | A \psi | E \psi$
 - where $a\in AP$ and ψ is a path formula
- Path formulae
 - $\psi ::= X \varphi | F \varphi | G \varphi | \varphi U \varphi$
 - where ϕ is a state formula

CTL semantics

- Intuitive semantics:
 - of quantifiers (A/E) and temporal operators (F/G/U)

CTL semantics

• Semantics of state formulae:

 $- s \models \varphi$ denotes "s satisfies φ " or " φ is true in s"

• For a state s of an LTS $(S, S_{init}, \rightarrow, L)$:

$-s \models true$	$s \models true$ always	
– s ⊨ a	\Leftrightarrow	$a \in L(s)$
$- \ s \models \varphi_1 \land \varphi_2$	\Leftrightarrow	$s \vDash \varphi_1$ and $s \vDash \varphi_2$
$- s \vDash \neg \varphi$	\Leftrightarrow	s ⊭ φ
$- s \models A \psi$	\Leftrightarrow	$\omega \vDash \psi$ for all $\omega \in Path(s)$
– s ⊨ E ψ	\Leftrightarrow	$\omega \models \psi$ for some $\omega \in Path(s)$

DP/Probabilistic Model Checking, Michaelmas 2011

CTL semantics

- Semantics of path formulae:
 - $-\omega \models \psi$ denotes " ω satisfies ψ " or " ψ is true along ω "
- For a path ω of an LTS (S,s_{init}, \rightarrow ,L):
 - $\begin{array}{ll} -\omega \vDash X \varphi & \Leftrightarrow & \omega(1) \vDash \varphi \\ -\omega \vDash F \varphi & \Leftrightarrow & \exists k \ge 0 \text{ s.t. } \omega(k) \vDash \varphi \\ -\omega \vDash G \varphi & \Leftrightarrow & \forall i \ge 0 \ \omega(i) \vDash \varphi \\ -\omega \vDash \varphi_1 \cup \varphi_2 & \Leftrightarrow & \exists k \ge 0 \text{ s.t. } \omega(k) \vDash \varphi_2 \text{ and } \forall i < k \ \omega(i) \vDash \varphi_1 \end{array}$

CTL examples

• Some examples of satisfying paths:

$$- \omega_0 \vDash X \operatorname{succ} \{\operatorname{try}\} \{\operatorname{succ}\} \{\operatorname{succ$$

 $-\omega_1 \vDash \neg fail U succ$

{try} {try} {succ} {succ}
$$\omega_1: s_0 \rightarrow s_1 \rightarrow s_1 \rightarrow s_3 \rightarrow s_3 \rightarrow \cdots$$

• Example CTL formulas:

$$- s_1 \models try \land \neg fail$$

 $- s_1 \models E [X succ] and s_1, s_3 \models A [X succ]$

 $- s_0 \models E [¬fail U succ] but s_0 ⊭ A [¬fail U succ]$

{fail}

Sa

{succ}

{try}

CTL examples

- AG $(\neg(crit_1 \land crit_2))$
 - mutual exclusion
- AG EF initial
 - for every computation, it is always possible to return to the initial state
- AG (request \rightarrow AF response)
 - every request will eventually be granted
- + AG AF $crit_1 \land AG AF crit_2$
 - each process has access to the critical section infinitely often

CTL equivalences

Basic logical equivalences:

$$- \phi_1 \lor \phi_2 \equiv \neg (\neg \phi_1 \land \neg \phi_2)$$

 $- \varphi_1 \rightarrow \varphi_2 \equiv \neg \varphi_1 \lor \varphi_2$

(false) (disjunction) (implication)

- Path quantifiers:
 - $-A \psi \equiv \neg E(\neg \psi)$ $-E \psi \equiv \neg A(\neg \psi)$
- Temporal operators:
 - $F \varphi \equiv true U \varphi$
 - $\ G \ \varphi \equiv \neg F(\neg \varphi)$

For example:

$$\mathsf{AG} \ \varphi \equiv \neg \mathsf{EF}(\neg \ \varphi)$$

CTL – Alternative notation

- Some commonly used notation...
- Temporal operators:
 - $F \varphi \equiv \Diamond \varphi$ ("diamond")
 - $\ G \ \varphi \equiv \ \Box \ \varphi \ (``box")$
 - $\, X \, \varphi \ \equiv \ \circ \, \varphi$
- Path quantifiers:
 - $\ A \ \psi \ \equiv \ \forall \ \psi$
 - $\ E \ \psi \ \equiv \ \exists \ \psi$
- Brackets: none/round/square
 - AF ψ
 - A (ψ_1 U ψ_2)
 - A [ψ_1 U ψ_2]

DP/Probabilistic Model Checking, Michaelmas 2011

PCTL

- Temporal logic for describing properties of DTMCs
 - PCTL = Probabilistic Computation Tree Logic [HJ94]
 - essentially the same as the logic pCTL of [ASB+95]
- Extension of (non-probabilistic) temporal logic CTL
 - key addition is probabilistic operator P
 - quantitative extension of CTL's A and E operators
- Example
 - send \rightarrow P_{≥ 0.95} [F^{≤ 10} deliver]
 - "if a message is sent, then the probability of it being delivered within 10 steps is at least 0.95"

PCTL syntax

- where a is an atomic proposition, $p \in [0,1]$ is a probability bound, $\sim \in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$
- A PCTL formula is always a state formula
 - path formulae only occur inside the P operator

DP/Probabilistic Model Checking, Michaelmas 2011

PCTL semantics for DTMCs

- Semantics for non-probabilistic operators same as for CTL:
 - $s \models \varphi$ denotes "s satisfies φ " or " φ is true in s"
 - $-\omega \models \psi$ denotes " ω satisfies ψ " or " ψ is true along ω "
- For a state s of a DTMC (S,s_{init},P,L):

PCTL semantics for DTMCs

- Semantics of the probabilistic operator P
 - informal definition: $s \models P_{-p} [\psi]$ means that "the probability, from state s, that ψ is true for an outgoing path satisfies $\sim p$ "
 - example: $s \models P_{<0.25}$ [X fail] \Leftrightarrow "the probability of atomic proposition fail being true in the next state of outgoing paths from s is less than 0.25"
 - formally: $s \models P_{\sim p} [\psi] \Leftrightarrow Prob(s, \psi) \sim p$
 - where: $Prob(s, \psi) = Pr_s \{ \omega \in Path(s) \mid \omega \vDash \psi \}$

DP/Probabilistic Model Checking, Michaelmas 2011

PCTL equivalences for DTMCs

- Basic logical equivalences:
 - false = \neg true - $\phi_1 \lor \phi_2 \equiv \neg(\neg \phi_1 \land \neg \phi_2)$ - $\phi_1 \rightarrow \phi_2 \equiv \neg \phi_1 \lor \phi_2$

(false) (disjunction) (implication)

- Negation and probabilities
 - e.g. $\neg P_{>p}$ [$\varphi_1 \cup \varphi_2$] $\equiv P_{\leq p}$ [$\varphi_1 \cup \varphi_2$]

Reachability and invariance

- Derived temporal operators, like CTL...
- Probabilistic reachability: P_{-p} [F ϕ]
 - the probability of reaching a state satisfying $\boldsymbol{\varphi}$
 - $F \varphi \equiv true U \varphi$
 - "¢ is eventually true"
 - bounded version: $F^{\leq k} \; \varphi \equiv true \; U^{\leq k} \; \varphi$
- Probabilistic invariance: P_{-p} [G φ]
 - the probability of $\boldsymbol{\varphi}$ always remaining true
 - $G \varphi \equiv \neg(F \neg \varphi) \equiv \neg(true U \neg \varphi)$
 - "φ is always true"
 - bounded version: $G^{\leq k} \varphi \equiv \neg(F^{\leq k} \neg \varphi)$

strictly speaking, G φ cannot be derived from the PCTL syntax in this way since there is no negation of path formulae

Derivation of $P_{\sim p}$ [G φ]

• In fact, we can derive $P_{\sim p}$ [G φ] directly in PCTL...

PCTL examples

- P_{<0.05} [Ferr/total>0.1]
 - "with probability at most 0.05, more than 10% of the NAND gate outputs are erroneous?"
- $P_{\geq 0.8}$ [$F^{\leq k}$ reply_count=n]
 - "the probability that the sender has received n acknowledgements within k clock-ticks is at least 0.8"
- $P_{<0.4}$ [$\neg fail_A U fail_B$]
 - "the probability that component B fails before component A is less than 0.4"
- $\neg \text{oper} \rightarrow P_{\geq 1}$ [F ($P_{>0.99}$ [$G^{\leq 100}$ oper])]
 - "if the system is not operational, it almost surely reaches a state from which it has a greater than 0.99 chance of staying operational for 100 time units"

PCTL and measurability

- All the sets of paths expressed by PCTL are measurable
 - i.e. are elements of the σ -algebra $\Sigma_{Path(s)}$
 - see for example [Var85] (for a stronger result in fact)
- Recall: probability space (Path(s), $\Sigma_{Path(s)}$, Pr_s)
 - $\Sigma_{Path(s)}$ contains cylinder sets C(ω) for all finite paths ω starting in s and is closed under complementation, countable union
- Next (Х ф)
 - cylinder sets constructed from paths of length one
- Bounded until ($\phi_1 U^{\leq k} \phi_2$)
 - (finite number of) cylinder sets from paths of length at most k
- Until ($\phi_1 \cup \phi_2$)
 - countable union of paths satisfying $\varphi_1 \; U^{\leq k} \; \varphi_2$ for all $k {\geq} 0$

Qualitative vs. quantitative properties

- P operator of PCTL can be seen as a quantitative analogue of the CTL operators A (for all) and E (there exists)
- Qualitative PCTL properties
 - $P_{\sim p}$ [ψ] where p is either 0 or 1
- Quantitative PCTL properties
 - $P_{\sim p}$ [ψ] where p is in the range (0,1)
- $P_{>0}$ [F φ] is identical to EF φ
 - there exists a finite path to a $\varphi\text{-state}$
- $P_{\geq 1}$ [F φ] is (similar to but) weaker than AF φ
 - a ϕ -state is reached "almost surely"
 - see next slide...

Example: Qualitative/quantitative

- Toss a coin repeatedly until "tails" is thrown
- Is "tails" always eventually thrown?
 - CTL: AF "tails"
 - Result: false
 - Counterexample: $s_0s_1s_0s_1s_0s_1...$
- Does the probability of eventually throwing "tails" equal one?
 - PCTL: $P_{\geq 1}$ [F "tails"]
 - Result: true
 - Infinite path $s_0s_1s_0s_1s_0s_1...$ has zero probability

Quantitative properties

- Consider a PCTL formula P_{-p} [ψ]
 - if the probability is unknown, how to choose the bound p?
- When the outermost operator of a PTCL formula is P
 - PRISM allows formulae of the form $P_{=?}$ [ψ]
 - "what is the probability that path formula $\boldsymbol{\psi}$ is true?"
- Model checking is no harder: compute the values anyway
- Useful to spot patterns, trends
- Example
 - $P_{=?}$ [F err/total>0.1]
 - "what is the probability that 10% of the NAND gate outputs are erroneous?"

Limitations of PCTL

- PCTL, although useful in practice, has limited expressivity
 - essentially: probability of reaching states in X, passing only through states in Y (and within k time-steps)
- More expressive logics can be used, for example:
 - LTL [Pnu77], the non-probabilistic linear-time temporal logic
 - PCTL* [ASB+95,BdA95] which subsumes both PCTL and LTL
- To introduce these logics, we return briefly again to non-probabilistic logics and models...

Branching vs. Linear time

- In CTL, temporal operators always appear inside A or E
 - in LTL, temporal operators can be combined
- LTL but not CTL:
 - F [req \wedge X ack]
 - "eventually a request occurs, followed immediately by an acknowledgement"
- CTL but not LTL:
 - AG EF initial
 - "for every computation, it is always possible to return to the initial state"

LTL

- LTL syntax
 - path formulae only
 - $\psi ::= true \mid a \mid \psi \land \psi \mid \neg \psi \mid X \psi \mid \psi \cup \psi$
 - where $a \in AP$ is an atomic proposition
- LTL semantics (for a path ω)
 - $\begin{array}{lll} \ \omega \vDash true & always \\ \ \omega \vDash a & \Leftrightarrow & a \in L(\omega(0)) \\ \ \omega \vDash \psi_1 \land \psi_2 & \Leftrightarrow & \omega \vDash \psi_1 & and \ \omega \vDash \psi_2 \\ \ \omega \vDash \neg \psi & \Leftrightarrow & \omega \nvDash \psi \\ \ \omega \vDash \neg \psi & \Leftrightarrow & \omega \llbracket \psi \\ \ \omega \vDash X \psi & \Leftrightarrow & \omega[1...] \vDash \psi \\ \ \omega \vDash \psi_1 \cup \psi_2 & \Leftrightarrow & \exists k \ge 0 \text{ s.t. } \omega[k...] \vDash \psi_2 \text{ and} \\ & \forall i < k \ \omega[i...] \vDash \psi_1 \end{array}$

LTL

• LTL semantics

- implicit universal quantification over paths
- i.e. for an LTS M = (S,s_{init},\rightarrow,L) and LTL formula ψ
- $s \models \psi \text{ iff } \omega \models \psi \text{ for all paths } \omega \in Path(s)$
- $\mathsf{M} \vDash \psi \text{ iff } s_{\text{init}} \vDash \psi$
- e.g:
 - A F [req \land X ack]
 - "it is always the case that, eventually, a request occurs, followed immediately by an acknowledgement"
- Derived operators like CTL, for example:
 - $\ F \ \psi \equiv true \ U \ \psi$
 - $-~G~\psi\equiv \neg F(\neg \psi)$

LTL + probabilities

- Same idea as PCTL: probabilities of sets of path formulae
 - for a state s of a DTMC and an LTL formula $\psi :$
 - $\operatorname{Prob}(s, \psi) = \operatorname{Pr}_s \{ \omega \in \operatorname{Path}(s) \mid \omega \vDash \psi \}$
 - all such path sets are measurable (see later)
- Examples (from DTMC lectures)...
- Repeated reachability: "always eventually..."
 - Prob(s, GF send)
 - e.g. "what is the probability that the protocol successfully sends a message infinitely often?"
- Persistence properties: "eventually forever..."
 - Prob(s, FG stable)
 - e.g. "what is the probability of the leader election algorithm reaching, and staying in, a stable state?"

PCTL*

- PCTL* subsumes both (probabilistic) LTL and PCTL
- State formulae:
 - $\varphi ::= true | a | \phi \land \phi | \neg \phi | P_{\sim p} [\psi]$
 - where $a\in AP$ and ψ is a path formula
- Path formulae:
 - $\psi ::= \varphi \mid \psi \land \psi \mid \neg \psi \mid X \psi \mid \psi \cup \psi$
 - where φ is a state formula
- A PCTL* formula is a state formula φ
 e.g. P_{>0.1} [GF crit₁] ∧ P_{>0.1} [GF crit₂]

Summing up...

- Temporal logic:
 - formal language for specifying and reasoning about how the behaviour of a system changes over time

CTL	Φ	non-probabilistic (e.g. LTSs)	
LTL	ψ		
PCTL	Φ		
LTL + prob.	Prob(s, ψ)	probabilistic (e.g. DTMCs)	
PCTL*	Φ		